
I

- A Distributed Programming Environment -- for M a r

Peter Brennan, Tom YcDonnell,
Gregory YcFarland, Lawrence J. Timmins and John D. Litke

Grumman Data Systems
1000 Woodbury Road

Woodbury, New York 11797

Ab et rac t --
Despite considerable commercial
exploitation of 'fault tolernnt' systems,
significant and difficult research problems
remain in such areas as fault detection and
correction. Thie paper describes a
research project to construct a distributed
computing test bed for loosely coupled
computers. The project is constructing a
tool kit to support research into
distributed control algorithms, including a
distributed Ma compiler, distributed
debugger, test harnesses, and environment
monitors. The M a compiler is being
written in Ma and will implement
distributed computing at the subsystem
level. The design goal is to provide a
variety of control mechanisms for
distributed programming while retaining
total transparency at the code level.

Introduction

Many new system designs specify a distributed architecture to
attain incremental growth or increased computational power.
These systems typically have homogeneous processors linked
either by shared memory or by a message passing system.
Concomitant with easy expandability and large computational
power, one gains some resiliance against hardware faults. That
is, if one processor fails, only the work executing on that
processor is lost, not the entire work load. If one adds the
capability to detect processor failure and to move the work
from that failed processor to other working processors, then
some tolerance for both hardware and software faults is
attained that cannot be achieved with single processor systems.

* Ada is a registered trademark of the Department of Defense,
Ada Joint Program Office.

0
B.3.1.1

-..ll.Uu- _.-.. ,*.-... - . . --.-

Further, if one can move work from a failed processor to an
active processor, rather easy extensions allow work to move
from one active processor to another, achieving a load
balancing effect for maximum output from the processor
resource.

This ability to function despite hardware failure has made
distributed, loosely coupled architectures a favored
architecture for ultra reliable systems. To make this
architecture effective, we must partition a problem into
several parts so that each part can execute relatively
independently on separate computers. The partitioning process
introduces requirements to coordinate the execution of the
several parts and to verify that each part is operating
properly so that, if a failure occurs, corrective action can be
taken. Such methods for problem coordination and control in a
distributed environment are the principal focus of this
research. We wish to assess whether, given the proper tools,
one can construct loosely coupled, distributed applications
that are cost effective, reliable, and efficient.

When a problem solution is developed for execution on a single
processor computer, the usual method is to design several
modules that jointly solve the problem. Coordination of the
solution process requires a communication channel between 0 modules, usually via shared variables or messages. Further,
any shared data must be specified and storage allocated. This
design results in intimate coupling between the several
modules, with a significant chance for error. Ada provides
extensive checking of the interfaces between modules and the
operations allowed on each data element, greatly reducing the
severity of module interface errors.

When a problem is partitioned for execution on a distributed
processing host, one designs several programs (instead of
modules) that jointly solve the problem. Interface errors may
still occur, but since a compiler can process only one program
at a time, there is no compiler support for checking and
controlling the inter-program interfaces. Hence one would like
to extend the power of Ada to distributed programs. In such an
extended language, a problem is still decomposed into
separately executing programs (Ada tasks), but data sharing and
module synchronization are implemented and checked by the
compiler. While such an extension itself presents
implementation difficulties, two additional problems are
present in a loosely coupled environment: assuring liveness
and serializability. Thus, we requf-re a test environment to
evaluate candidate implementation methods and to develop
efficient new algorithms. The Ada language was designed to
provide support for a distributed programming paradigm. Its’
visibility and synchronization rules provide a model for data
sharing, while the task and rendezvous constructs provide a
control model. Ada provides primitive mechanisms for assuring
liveness and serializability, but the attainment of these goals
is left to the programmer. To assess the viability of Ada’s

B.3.1.2

model, we require two things: a distributed host with a
validated M a compiler, and a tool kit for developing,
debugging and meaouring the performance of dietributed
progrtrmo. However, becauee M a provideo a model but not m
implementation of distributed programming constructs, we must
expect to try a variety of implementations before eettling on
one with acceptable performance. Hence w e require a compiler
that we can modify to try various implementations of M a .

1 These considerations have led to the establishment of a Fault
Tolerant Computing project at Grumman Data Systems with the
following goale:

1. To construct am Ada compiler for a dietributed architecture
host eo that the implementation of Ada’e model can be
varied eignificantly.

2. To implement several distributed programming models and
assees their viability for eerious problem solving in
realistic environments.

3. To develop models and methode for solving the liveness and
serializability probleme, and to teet these ideas on the
dietributed programming environment provided by the first
two goale.

The project began in July of 1985 with a goal of constructing
the foundation M a compiler by e w e r 1988 and providing the
first implementation of a distributed programming model by
early 1987. The remainder of this paper describes the design
and development of the foundation compiler and its supporting
environment, and concludes with an outline of a distributed
programming implementation for Ada.

Hardware Technology

The hardware base is the Eternity E-5000 computer system from
Tolerant Systems, San Jose, CA. This syctem contains loosely
coupled processors built with the National Semiconductor 32000
seri.es VLSI processors. The operating system is TX, a superset
of Unix BSD 4.2 and System V with extensions for transaction
processing, distributed file systeme, and built- in fault
detection and recovery. The hardware is targeted for the
commercial on-line transaction processing market, and so
features a particularly robust and flexible communications
capability. The fault tolerant capability is achieved with
fail fast processors, dual redundant communication paths, and
fault detection and reconfiguration software. Further,
operating system services themselves are distributed in such a
way as to support proceso migration, either to avoid faults or
to provide load balancing. This eupport for distributed 0 programming algorithms ie an important advantage; it minimizes
the infrastructure we must build.

B.3.1.3

Each processing element is actually a tightly coupled met of
32000 procomeor.. (See Fig. 1). One processor (WV) is
dedicated to umer applications, one (WU) to the operating
system, and one (CIP) to I/O m d communications protocols. The mu provide8 a UNIX compatible executing environment, while the

provideo a real-time environment, Both processors have a
cormDon system lrnguage (C) m d machine language. Although
operating system oervices differ somewhat on each processor,
one compiler can produce code that will execute on either
procamor. This permits ue to develop an .Ida compiler that
will produce code for both a time sharing aiid a real time
environment.

The file syetem is UNM compatible at its interface, but highly
modified in its implementation to provide a global name space
and a robust foundation for system operation. In addition to
traditional services, the file system provides an efficient,
guaranteed message delivery system and plexed files with
automatic restoration after failure. Thie is an essential
system service for effective implementation of Ada's
distributed programming model.

I

E-6000 Configuration Example
Figure 1

Compiler Technology

The M a compiler must be constructed in such a way that the r u n
time library can be modified. Since Ma'e model fo r
distributed computing is centered on the task construct, the

B.3.1.4
0

I

e
t inter-taak rendeavous taek schedt ing algorithms muet ale0

bo modifiable. We have chosen the retargetable compiler
technology from TeleSoft, San Diego CA as the baee on which to
build. This system providee the syntactic and eemantic
aaalysis for M a , manages am Ada library, and providee output
in a tree etructured form at approximately aeeembly language
level. Our task is to build a suitable code generator for the
E-6000 hardware. A key feature ie that eufficient information
on the Ada taek implementation is available eo that we can
modify the Telesoft implementation model if required.

\

One of our theme8 when implementing thie compiler ie program
execution efficiency. Execution efficiency not only requires
an efficient algorithm, one of the primary foci of this
reeearch, but aleo an efficient implementation of those
algorithme by the compiler. Thus code optimization becomee a
theme of the first part of the project. Because of our
implementation strategy, the potentially arduous construction
of optimization algorithme splite naturally into three parts.
We will depend on the TeleSoft front end for optimiaa.tion flow
of control, common sub-expression elimination, etc. The output
of the compiler is National Semiconductor assembly code for the
32000 processor. The aeeembler on the E-5000 implements
extensive optimizations that are effective for a C language
compiler, euch as code hoisting and instruction selection.
Thus our code generator will concentrate on optimizations such
as register allocation, minimization of bounds checks,
efficient exception propagation, and the like.

Since the compiler will produce code for a real time
environment, we must ensure that efficient programs are
possible. Further, a highly modular language like Ada could
invoke a large number of subroutine calls, making efficient
call/return mechanisms a requirement. We focus on our
implementation decisions surrounding the call/return mechanism
as an example of tradeoffe involved during the compiler
construction process.

The call/return mechanism has several basic requirements. It
must:

1. Allow passing of data into and out of a subroutine.

2. Allow saving and restoring of temporary registers.

3. Allow access to out of scope variables.

4. Allow exception propagation out of the local scope.

5.

The E-5000 uses a stack mechanism, growing down from high
memory locations, for temporary variables including frame
pointers. Thus the basic call/return paradigm is a classic
one :

Allow task switching and hence logical reentrancy.

B.3.1.6

Call: Put vrriablem on the stack
Put return address on the stack
Branch to the subroutine

(in called routine)
Save old stack baee and old frame pointer on etack
Set n e w etack base and new frame pointer

Restore old etack baee and old frame pointer
Branch back to return addreas on etack

Return:

(in calling routine)
Remove return variables from stack

To extend this model for Ada, we must decide how to allocate
stack space considering the multi-tasking M a model and how to
propagate information to/from the called routine with a minimum
of overhead. M a requires extra information be passed across
this interface to allow out of ecope variable references and to
propagate exceptione. It was a particular goal to minimize the
overhead of these latter requirements.

For the etacks, we have adapted the results from [GUPT85],
namely to use a static etorage area for module instances and a
dynamic heap for temporary variables, satisfying requirements

(This scheme is often called a Berry-heap after
!6%%8]). When allocating etacke for independent tasks, one
must account for the possibility of collision of these stacks
with each other [YEH86]. There are only two solutions, impose
a static limit on the size of the stacks, or dynamically create
room when required. In either case, the stack-full detection
mechanism provided by the hardware is no longer useful for
multiple stacks. We must implement the checks efficiently in
software .

0

We allocate an initial etack with the intent to dynamically
allocate more stack space if and when required. This approach
makes effective use of available memory even for very large
numbers of tasks, and imposes very little overhead [YEH86] .
However, we now muet check for stack overflow before every
stack usage, an unacceptable overhead. Our first solution was
to check, before every call, that parameters would fit on the
stack, and then check at every entry that local variables (the
frame) would fit un the stack. This is a two call overhead for
every original call, an unacceptable result. The final design
depends on the observation that stack requirements for local
data and parameter passing are known at compile time, so that
we can substitute one call on entry to each routine to check
for sufficient stack space. Further, since routines that
invoke no other routines typically have very small stack
requirements, by requiring a emall buffer space be present on
all stacks we can remove all stack checking overhead for such
calls. We accepted such minimal overhead for the benefits of a
highly dynamic stack allocation mechanism.

8.3.1.6

The remaining two requirements, to implement out of acope
references rsd 60 permit exception propagation to cross the
call/return interface, each require separate treatments. Out
of scope references in a multi-task environment are often
implemented by copying a 'dieplay' onto the currently active
stack before every call. This display contains the storage
offset pointer for each visible module, including the calling
module. Each out of scope reference is implemented as an
indirect reference relative to the proper pointer plus an
offset. The difficulty with this eolution ie the requirement
to set up the stack before each call. Although optimization
algorithms could avoid setting up unnecessary displays, we
would prefer to avoid the overhead altogether.

t.

Our solution requires a static display area, one per task.
Each module has a statically determinable lexical level that
serves as an index into this table. When calling any module,
we save the current value in the table at our lexical level,
and overwrite the proper frame pointer in the table. On return
from the routine, we merely copy back the original contents of
the display. This requires an overhead of one load and two
stores per call, optimizable to no action at all if we can
determine that the routine being called does not reference any
variables at our lexical level or higher and calls no other
routine.

An efficient solution to exception propagation requirements is 0 more complex. For locally raieed exceptions, we can clearly
use a direct transfer to the exception handling code. However,
if an exception must be propagated to an outer scope, we must
'unravel' the stack frames as we search for the handler. In
addition, w e require that the cause and location of the
exception raising be determinable in case a handler is not
found. For real time programming, we would like such a
mechanism to be swift. Further, if the exception could not be
handled at any level, for debugging purposes we should not
unravel the entire stack before we determine that the exception
is unhandlable. Otherwise, essential debugging information is
lost.

Our solution requires no overhead at call time and uses a
binary search to identify the relevant exception handler before
unraveling the stack. At compile time, each exception is
uniquely identified as to raiee location and reason, and every
exception handler is uniquely identified as to the exceptions
it handles, permitting identification of exceptions in a user
friendly way should a handler not be found. The identification
information, together with the addresses of the scope of each
exception handler, is stored in a table in static memory. An
initialization routine sorts this table before the program
runs. If an exception must be propagated, the propagation code
follows the stack pointer chain backwards, searching the common
exception table for exception handlers that apply to the
address given by each instance of the stack pointer chain until
a handler is found. The table can be searched quickly for

B.3.1.7

rapid exception propagation. When a handler is found, the
stack is quickly unraveled in one operation to the proper point
and the handler invoked.

While not an exhaustive list, these items illustrate some
directions we a r e taking in the development of an efficient M a
compiler. Maay of our efficiency oriented algorithms are
heavily parameterized so that we cam vary their effect and
study the resulting program behavior. This approach will allow
UB to tune the compiler for best effect under realistic
conditions. Results of these efforts will be reported at 1%

future conference,

Distributed Programming Model

When implementing an M a compiler for a distributed programming
host computer, there are three levels of capability to be
considered, namely:

1. Minimum capability that satisfies the M a Language
Reference Manual [ANSI83].

2. Permit advice from the programmer to influence the
implementation or execution of the model.

3. Enhanced functionality within the requirements of thc Ada
Language Reference Manual.

The remainder of this section addresses some issues pertinent
only to the minimal capability implementation.

The execution of parallel, distributed processes under one
computational model introduces such complexities that few
practical systems today are entirely transparent to the user.
The mark of a successful implementation is correctness, general
applicability, and the capability to simplify the task of
programming parallel execution paths. In contrast, Ada seeks
to achieve two different goals: a simple inter-process
communication paradigm and the efficacy of a complete semantic
check of the entire collection of processes, viewed as a whole.
Whether these goals are necessary or sufficient for a
successful implementation is to be determined.

Ada defines a task model that provides a set of primitive
communication mechanisms (accepts/entry calls) to implement
parallel tasks. Although use of these requires explicit
programmer cognizance, the programmer's task is simplified
somewhat. The price for thie simplification is that the
compiler writer must implement correct interpretations for
three shared elements: data, control via exceptions, and
program state. Each of these olements is considered separately
below.

B.3.1.8

wmw
I? ,.

To provide L background for this discussion, some fundamental
deoign decisions must be noted. The first version of the
distributed compiler will produce an executable image that
executes on each distributed host unaltered. In other words,
the inetaatistion of any module will execute on only one host,
though its code image is present on all hoete. This decision
meane that the code on each host ie larger than the minimal
required, but that addresses not on the stack and not
dynamically allocated are universally correct from host to
host. Further, our hardware is a segmented, virtual memory
machine, so that physical memory is not significantly wasted by
this decision.

A eecond design decision is to use the operating eystem message
passing facility for all intertask communication. Since we
have compiled the program as a whole, targeted for one uniform
processor, this communication need not incur the overhead of
formatting/unformatting data, and BO it can be used for
co-located tasks as well as distributed tasks.

A third decision is that only tasks will be considered for
distribution during the first implementation. (While this ie
not strictly true as we shall see, this provides the primary
focus when designing the implementation model.) Further, to
ease initial implementation efforts, no access variables can be
referenced acrose a distributed interface. Now let us return
to a discussion of how we intend to share data, control via
exceptions, and program state information.

Data sharing between two asynchronous tasks takes several
forms. The first is via data that is visible to two different
tasks by operation of the scope rules of M a . The Ada Language
Reference Manual specifies that two tasks can ' s e e ' the effects
of updating shared variables only at synchronization points
such as those associated with a rendezvoue or by pragma
'SHARED', allowing every access of a variable to be a
synchronization point. However, the Ada Language Reference
Manual does not require that the compiler detect erroneous
programs that violate these rulee. A second, indirect way to
share data is by the common invocation of library routines that
reference static data. For example, a terminal 1/0 routine in
a library package might reference static data to define the
current line number on the screen; every call to this routine
m:by alter the data.

Motivated by these two concerns, we have decided that the
pragma 'SHARED' will not be allowed for two tasks that are not
co-located within one host process. To addrese the indirect
aharing of variables via library packages, we define three
classes of objecte (functions and procedures): idempotent,
serially reusable, and re-entrant. The first class will
execute correctly without any historical information. Any
routine that does not acceas static data or any 'state of the
world' is in this class. The second class indicates routines
that access some static data, but that can accept successive

B.3.1.8

call. once the first call is complete, Most library routines
are in thio class. The third class, while they may depend on
static data, may also be called by another routine the
first request is complete. These routines, such as I/O
drivers, usually depend on a separate temporary data etore
(stack) per task to achieve their re- entrancy.

before

If a routine is declared idempotent, then we may execute any
available local copy of the relevant code, taking no care to
share etatic data among distributed tasks. This is the default
nature for procedures and functions. If the routine is
declared serially reusable, then we will execute the call on
the one host that contains the inetantiated version of the
routine, and all calls will be queued in a FIFO manner. If the
routine is declared re-entrant, then we will execute the call
on the local host and broadcast any updated etatic data at the
completion of the call. It is the programmer’e responsibility
to eneure that the specification of the proper behavior model
matches his or her intent.

Another information sharing between two concurrent taeks is via
the exception propagation structure. Since the colocation of a
taek and any exception handlers that it may invoke are not
guaranteed, we must provide both a fast means to determine the
location of the exception handler and a means to propagate the
exception to that handler. Our decieion to use a common
program image allows the exception propagation logic to execute
ae a idempotent routine, determining the location of the
handler before invoking any communication overhead. The
communication required to pass control to a remote eite is
reduced to the identification of the raised exception.

Global etate information is shared among distributed processes
by the Ada requirement for taek termination. When a task h a s
an open terminate alternative, it must consider the state of
all dependent tasks, sibling tasks, and the state of the p a r e n t
task before entering the terminated state. In turn, thie means
that one must achieve a globally consistent picture of the
state of all such tasks so that a correct decision can be made.
There are only two solutions to thie requirement. One solution
electe or appointe a master controller to determine the state
of the world, while the other eolution requires periodic
broadcasting of all etates to achieve a consensus on a
consistent state. The latter approach ie often called a
coneietent checkpoint method, and often entails significant
overhead waiting for all taske to achieve a stable state. F J r
thie reason, wo have elected to use the first method, by
electing a ’controller’ task as that task that dominatee the
immediate terminadtion decieion. By polling meane, outlined in
[JAH85:, this one taek (actually the local run time system
attached to that task) will calculate the termination condition
for all subordinate tasks.

B .3.1.10

Our general direction for implementation of the M a distributed
programming model has been decided. Our next step is to
consider meano to debug distributcd proceeses and to measure
the effectiveness of our initial implementation. This effort
will result in a test suite of distributed programs, designed
especially to teat distributed control algorithms rather than
just the computational advantage of parallel computation. The
euite will be then used to evaluate the effectiveness of
various distributed programming models.

.
References

[ANSI833 ANSI/MIL-?TD 1816A, Reference Manual for the Ada
Programming Language; January 1983

[BERR78] D. Berry, L. Chirica, J. Johnston, D. Martin, and
A Sorkin, "Time required for reference count management in
retention block- structured languages, part l,I1, Int. J.
Comput. Inform. Sci., 7(1), pp.91-119 (1978)

[GUPT85] Rajiv Gupta and Mary Lou Soffa, "The efficiency of
storage management schemes for M a programs", M a Letters, Vol
5, 2, pp.164- 172, (1985)

[JAH85] Rakeeh Jha and Dennis Kafura, "Implementation of Ada
Synchronization in Embedded, Distributed Systems", Virginia
Tech report TR-85-23, 1985.

[YEH86] D. Yun Yeh and Toehinori Munakata, "Dynamic Initial
Allocation and Local Reallocation Procedures for Multiple
Stacks", Comm. ACM, Vol 28, 2, pp.134-141, February 1986

3.3.1.11

